A Mass-Based Approach for Local Outlier Detection

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Local Density-Based Approach for Local Outlier Detection

This paper presents a simple but effective density-based outlier detection approach with the local kernel density estimation (KDE). A Relative Densitybased Outlier Score (RDOS) is introduced to measure the local outlierness of objects, in which the density distribution at the location of an object is estimated with a local KDE method based on extended nearest neighbors of the object. Instead of...

متن کامل

Similarity- based approach for outlier detection

This paper presents a new approach for detecting outliers by introducing the notion of object’s proximity. The main idea is that normal point has similar characteristics with several neighbors. So the point in not an outlier if it has a high degree of proximity and its neighbors are several. The performance of this approach is illustrated through real datasets.

متن کامل

Outlier Detection : A Clustering - Based Approach

16 Abstract— Outlier detection is a fundamental issue in data mining; specifically it has been used to detect and remove anomalous objects from data. It is an extremely important task in a wide variety of application domains. In this paper, a proposed method based on clustering approaches for outlier detection is presented. We first perform the Partitioning Around Medoids (PAM) clustering algor...

متن کامل

A New Local Distance-Based Outlier Detection Approach for Scattered Real-World Data

Detecting outliers which are grossly different from or inconsistent with the remaining dataset is a major challenge in real-world KDD applications. Existing outlier detection methods are ineffective on scattered real-world datasets due to implicit data patterns and parameter setting issues. We define a novel Local Distance-based Outlier Factor (LDOF) to measure the outlier-ness of objects in sc...

متن کامل

Outlier Detection Based on Local Kernel Regression for Instance Selection

In this paper, we propose an outlier detection approach based on local kernel regression for instance selection. It evaluates the reconstruction error of instances by their neighbors to identify the outliers. Experiments are performed on the synthetic and real data sets to show the efficacy of the proposed approach in comparison with the existing counterparts.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: 2169-3536

DOI: 10.1109/access.2021.3053072